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What are 
neural 

networks?

• Classification models comprised of 
interconnected computing units, or 
neurons, (loosely!) mirroring the 
interconnected neurons in the human brain
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Neural networks 
are an increasingly 

fundamental tool 
for natural 

language 
processing.

ACL Year # Paper Titles with “Neural” % Paper Titles with “Neural”
2000 0 0

2001 0 0

2002 0 0

2003 0 0

2004 1 1/137 = 0.7%

2005 0 0

2006 0 0

2007 1 1/207 = 0.5%

2008 0 0

2009 1 1/248 = 0.4%

2010 0 0

2011 0 0

2012 0 0

2013 5 5/399 = 1.3%

2014 11 11/333 = 3.3%

2015 36 36/363 = 9.9%

2016 49 49/390 = 12.6%

2017 81 81/357 = 22.7%

2018 138 138/674 = 20.5%

2019 197 197/1449 = 13.6%
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Are neural networks new?
1943: First 

mathematical 
NN model1

1McCulloch, W. S., and W. Pitts. "A logical calculus of the ideas immanent in nervous 
activity." The bulletin of mathematical biophysics 5.4 (1943): 115-133.

1957: The 
perceptron is 

proposed2

2Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing automaton Project 
Para. Cornell Aeronautical Laboratory.

1971: Implementation 
of feedforward network 

with 8 layers3

3Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE transactions on Systems, 
Man, and Cybernetics, (4), 364-378.

1982: First 
convolutional 

neural network4

4Fukushima, K., & Miyake, S. (1982). Neocognitron: A self-organizing neural network model for a 
mechanism of visual pattern recognition. In Competition and cooperation in neural nets (pp. 267-
285). Springer, Berlin, Heidelberg.

1982: First 
recurrent neural 

network5

5Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.
2/4/20 Natalie Parde - UIC CS 521 4



Why haven’t they 
been a big deal until 
recently then?

• Data

• Computing power
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Neural 
networks 
are 
everywhere!
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Neural 
Network 

Basics

• Neural networks are comprised of small 
computing units

• Each computing unit takes a vector of 
input values

• Each computing unit produces a single 
output value

• Many different types of neural networks 
exist
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Types of Neural Networks

• Feedforward Neural Network
• Convolutional Neural Network
• Recurrent Neural Network
• Generative Adversarial Network
• Sequence-to-Sequence Network
• Autoencoder
• Transformer
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Types of Neural Networks

• Feedforward Neural Network
• Convolutional Neural Network
• Recurrent Neural Network
• Generative Adversarial Network
• Sequence-to-Sequence Network
• Autoencoder
• Transformer

Today’s lecture!
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Feedforward 
Neural 
Networks

• Earliest and simplest form of neural network
• Data is fed forward from one layer to the next
• Each layer:

• One or more units
• A unit in layer n receives input from all 

units in layer n-1 and sends output to all 
units in layer n+1

• A unit in layer n does not communicate 
with any other units in layer n

• The outputs of all units except for those in 
the last layer are hidden from external 
viewers
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Feedforward Neural Networks

Input Output

Feature vector (e.g., 300-
dimensional word embedding) Predicts a class label or output value

2/4/20 Natalie Parde - UIC CS 521 11



Feedforward Neural Networks

Input Output

Hidden layers

Computing units
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Feedforward Neural Networks

Input

Data is fed forward 
from input to the 
first hidden layer

Output
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the first hidden layer to 
the second hidden layer
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Feedforward Neural Networks

Input Output

Data is fed forward from 
the second hidden layer 
to the output unit
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Feedforward Neural Networks

Input Output Class label
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Are feedforward neural networks an 
example of deep learning?

Yes ...if they have multiple layers

People often tend to refer to neural network-based 
machine learning as deep learning

Why?

• Modern networks often have many layers (in other words, they’re deep)
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How many layers is “deep?”

Input Output
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How many layers is “deep?”

Input Output
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How many layers is “deep?”

Input Output
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Neural 
networks tend 

to be more 
powerful than 

traditional 
classification 

algorithms.

• Traditional classification algorithms usually 
assume that data is linearly separable

• In contrast, neural networks learn nonlinear 
functions
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Neural networks also commonly use different types 
of features from traditional classification algorithms.

• Manually engineer a set of features and extract them for each 
instance
• Part-of-speech label
• Number of exclamation marks
• Sentiment score

Traditional classification

• Implicitly learn features and extract those for each instance
• Word embeddings

Neural networks
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Neural 
networks 
aren’t 
necessarily 
the best 
classifier 
for all 
tasks!

Learning features implicitly
requires a lot of data

In general, deeper network → more 
data needed

Thus, neural nets tend to work very 
well for large-scale problems, but 
not that well for small-scale 
problems
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Building 
Blocks for 

Neural 
Networks

• At their core, neural networks are 
comprised of computational units

• Computational units:
1. Take a set of real-valued numbers as 

input
2. Perform some computation on them
3. Produce a single output

0.5

0.2

1.7

0.9

5.6

0.3

4.2

1.4

1
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Computational 
Units

• The computation performed by each unit is 
a weighted sum of inputs

• Assign a weight to each input
• Add one additional bias term

• More formally, given a set of inputs 
𝑥", … , 𝑥%, a unit has a set of corresponding 
weights 𝑤",… ,𝑤% and a bias 𝑏, so the 
weighted sum 𝑧 can be represented as:

• 𝑧 = 𝑏 + ∑, 𝑤,𝑥,
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Sound 
familiar?

• This is exactly the same sort of weighted 
sum of inputs that we needed to find with 
logistic regression!

• Recall that we can also represent the 
weighted sum 𝑧 using vector notation:

• 𝑧 = 𝑤 - 𝑥 + 𝑏
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Computational 
Units

• The weighted sum of inputs computes a 
linear function of 𝑥

• As we already saw, neural networks 
learn nonlinear functions

• These nonlinear functions are 
commonly referred to as activations

• The output of a computation unit is thus 
the activation value for the unit, 𝑦

• 𝑦 = 𝑓 𝑧 = 𝑓(𝑤 - 𝑥 + 𝑏)
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
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There are many different activation 
functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Exact same sigmoid function used with logistic regression
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Computational Unit with Sigmoid 
Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Input: “beautiful brutalist architecture”

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

[0.5, 0.6]Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.5 * 0.2 = 0.1

0.6 * 0.3 = 0.18

1.0 * 0
.5 = 0.5

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒56.89 = 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
1

1 + 𝑒56.89 = 0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”

2/4/20 Natalie Parde - UIC CS 521 37



Example: Computational Unit with 
Sigmoid Activation

x1

x2

b

w1

w2

wb

∑ 𝜎 yz = 0.78 a = 0.686

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.686

0.686

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Remember, there are many different 
activation functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
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Remember, there are many different 
activation functions!

exponential linear unit (elu)
softmax

scaled exponential linear unit (selu)

softplus softsign

rectified linear unit (re
lu)

hyperbolic tangent (tanh)

sigmoid
Particularly common activation functions
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Activation: 
tanh

• Variant of sigmoid that ranges from -1 to +1
• 𝑦 = =>5=?>

=>@=?>

• Once again differentiable
• Larger derivatives → generally faster 

convergence
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78

𝑒A − 𝑒5A

𝑒A + 𝑒5A

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒6.89 − 𝑒56.89

𝑒6.89 + 𝑒56.89 = 0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78
𝑒6.89 − 𝑒56.89

𝑒6.89 + 𝑒56.89 = 0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
tanh Activation

x1

x2

b

w1

w2

wb

∑ tanh yz = 0.78 a = 0.653

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.653

0.653

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Activation: 
ReLU

• Ranges from 0 to ∞
• Simplest activation function:

• 𝑦 = max(𝑧, 0)
• Very close to a linear function!
• Quick and easy to compute
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.1 + 0.18 + 0.5 = 0.78 max(𝑧, 0)

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 max(𝑧, 0) = 0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Example: Computational Unit with 
ReLU Activation

x1

x2

b

w1

w2

wb

∑ ReLU yz = 0.78 a = 0.78

Weights (Input): [0.2, 0.3]
Weight (Bias): [0.5]

Bias: 1.0

[0.5, 0.6]

0.1

0.18

0.5

0.78 0.78

0.78

Compute vector (e.g., 
averaged Word2Vec 
embeddings for “beautiful,” 
“brutalist,” and “architecture”)

Input: “beautiful brutalist architecture”
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Comparing 
sigmoid, 
tanh, and 
ReLU
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Combining 
Computational 
Units

Neural networks are powerful 
primarily because they are able 
to combine multiple 
computational units into 
larger networks

Many problems cannot be 
solved using a single 
computational unit
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Early example of this: The XOR problem

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 0 1 1
1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0
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AND and OR can 
both be solved 
using a single 
perceptron.

x1

x2

b

w1

w2

wb

∑

• Perceptron: A function that outputs a binary value 
based on whether the product of its inputs and 
associated weights surpasses a threshold

• Learns this threshold iteratively by trying to find 
the boundary that is best able to distinguish 
between data of different categories

𝑦 = J0, if 𝑤 - 𝑥 + 𝑏 ≤ 0
1, if 𝑤 - 𝑥 + 𝑏 > 0
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It’s easy to 
compute 
AND and OR 
using 
perceptrons.

AND

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 -1
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It’s easy to 
compute 
AND and OR 
using 
perceptrons.

OR

x1

x2

b

w1

w2

wb

∑

! = 	 $0, if	) * + + - ≤ 0
1, if	) * + + - > 0

1

1

1 0
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However, it’s 
impossible to 
compute XOR using 
a single perceptron.

x1

x2

0

1

• Why?
• Perceptrons are linear classifiers
• XOR is not a linearly separable function

AND OR XOR
x1 x2 y x1 x2 y x1 x2 y
0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

2/4/20 Natalie Parde - UIC CS 521 59



The only successful way to compute XOR is by 
combining these smaller units into a larger network.

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

x1

x2

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR

0

1

1

1

1

0

∑

∑
1

1

-1

∑
1

-2

y

1

0

XOR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 0
0

1

0

0

1

-1

1

0

1

0

ReLU

ReLU

𝑦 = max(𝑧, 0)

ReLU
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Truth Table Examples: XOR
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Why does this work?
• When computational units are combined, the outputs from each 

successive layer provide new representations for the input
• These new representations are linearly separable
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Combining 
Computational 

Units

• In our XOR example, we manually assigned 
weights to each unit

• In real-world examples, these weights are 
learned automatically using a 
backpropagation algorithm

• Thus, the network is able to learn a useful 
representation of the input training data on 
its own

• Key advantage of neural networks
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More about specific 
unit types in 
feedforward 
networks….

• Three main unit types:
• Input units
• Hidden units
• Output units
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Input Units

• Vector of scalar values
• Word embedding
• Other feature vector

• No computations performed in input units

0.5 0.2 0.1 0.7 0.4
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Hidden Units
• Computation units

• As described previously, take a weighted sum 
of inputs and apply a nonlinear function to it

• Contained in one or more layers
• Layers are fully connected

• All units in layer n receive inputs from all units 
in layer n-1

• Layer n-1 can be the input layer or an 
earlier hidden layer
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Hidden 
Layers

• Remember: Individual computation units have 
parameters w (the weight vector) and b (the 
bias)

• The parameters for an entire hidden layer 
(including all computation units within that layer) 
can then be represented as:

• W: Weight matrix containing the weight 
vector wi for each unit i

• b: Bias vector containing the bias value bi
for each unit i

• Single bias for layer, but each unit can 
associate a different weight with the bias

• Wij represents the weight of the connection from 
input unit xi to hidden unit hj
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Why 
represent 
W as a 
single 
matrix?

• More efficient computation across the 
entire layer

• Use matrix operations!
• Multiply the weight matrix by input vector x
• Add the bias vector b
• Apply the activation function g (e.g., 

sigmoid, tanh, or ReLU)
• This means that we can compute a 

vector h representing the output of a 
hidden layer as follows:

• h = 𝜎(𝑊x + b)
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Formal 
Definitions

• An input (layer 0) vector x has a 
dimensionality of n0, where n0 is the number 
of inputs

• So, 𝑥 ∈ ℝ%T

• The subsequent hidden layer (layer 1) has 
dimensionality n1, where n1 is the number of 
hidden units in the layer

• So, ℎ ∈ ℝ%V and 𝑏 ∈ ℝ%V (remember, b 
contains the different weighted bias 
values associated with each hidden unit)

• The weight matrix thus has the 
dimensionality 𝑊 ∈ ℝ%V×%T
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Output Units
• Provide probabilities indicating whether 

the input belongs to a given class
• Number of output units can vary:

• Binary classification might have a 
single output unit

• Multinomial classification (e.g., part-of-
speech tagging) might have an output 
unit for each class
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Output 
Layer

• Provides a probability distribution across 
the output nodes

• How?
• Output layer also has a weight matrix, U
• Bias vector is optional
• Following intuition/examples, 𝑧 = 𝑈h, 

where h is the vector of outputs from the 
previous hidden layer
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Formal 
Definitions

• Letting n2 be the number of output 
nodes, 𝑧 ∈ ℝ%Y

• The weight matrix U thus has the 
dimensionality 𝑈 ∈ ℝ%Y×%V, where n1 is 
the number of hidden units in the 
previous layer

• Uij is the weight from unit j in the hidden 
layer to unit i in the output layer
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Just like with logistic regression, the values 
in z are just real-valued numbers.

• We need to convert them to probabilities instead!
• We do this using activation functions

• Sigmoid
• Softmax
• Etc.

• Popular choice in multinomial feedforward networks: 
Softmax

• Increase the probability of the highest value in the 
vector

• Decrease the probabilities of the other values
• softmax 𝑧, = =>]

∑^_V
|z| =>^
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Feedforward 
Network

• Final set of equations:
• h = 𝜎 𝑊x + 𝐛
• z = 𝑈h
• 𝑦 = softmax(z)

• This represents a two-layer feedforward 
neural network

• When numbering layers, count the 
hidden and output layers but not the 
input layer
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What if we 
want our 

network to 
have more 

than two 
layers?

• Let W[n] be the weight matrix for layer n, b[n]

be the bias vector for layer n, and so forth
• Let 𝑔(-) be an activation function

• ReLU
• tanh
• softmax
• Etc.

• Let a[n] be the output from layer n, and z[n]

be the combination of weights and biases 
W[n] a[n-1]+ b[n]

• Let the input layer be a[0]
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What if we 
want our 
network to 
have more 
than two 
layers?

• With this representation, a two-layer network 
becomes:

• 𝑧["] = 𝑊["]𝑎[6] + 𝑏["]

• 𝑎["] = 𝑔 " 𝑧 "

• 𝑧[g] = 𝑊[g]𝑎["] + 𝑏[g]

• 𝑎[g] = 𝑔 g (𝑧 g )
• 𝑦h = 𝑎[g]

• With this notation, we can easily generalize to 
networks with more layers:

• For i in 1..n
• 𝑧[,] = 𝑊[,]𝑎[,5"] + 𝑏[,]

• 𝑎[,] = 𝑔 , (𝑧 , )
• 𝑦h = 𝑎[%]
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One final 
note….

• The activation function 𝑔(-) generally differs 
for the final layer

• Earlier layers will more commonly be ReLU
or tanh

• Final layers will more commonly be softmax
(for multinomial classification) or sigmoid (for 
binary classification)
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Summary: 
Feedforward 

Neural 
Networks

• Neural networks are classification models comprised of 
interconnected computing units

• Feedforward neural networks are a subset of neural 
networks in which information is passed forward from one 
fully-connected layer to the next

• Individual computing units in neural networks calculate 
weighted sums of input values

• Activation functions are applied to these linear combinations 
to produce non-linear representations

• Feedforward neural networks contain three types of units:
• Input
• Hidden
• Output

• When neural networks contain multiple layers stacked on top 
of one another, they are often referred to as deep neural 
networks
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